DOI: https://doi.org/10.32515/2409-9392.2018.31.150-158

Identification of the Linearized Model of Controller Dynamics and Danfoss Temperature Control Valve According to the Passive Experiment

Dmytro Luzshkov, Sergiy Osadchy, Olexandr Didyk

About the Authors

Dmytro Luzshkov, postgraduate, Central Ukranian National Technical University, Kropyvnytskyi, Ukraine, E-mail:sever_servis17@ukr.net

Sergiy Osadchy, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukranian National Technical University, Kropyvnytskyi, Ukraine, E-mail: srg2005@ukr.net

Olexandr Didyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), National University of Bioresources and Natural Resources of Ukraine, Kyiv, E-mail: didyk_s79@ukr.net

Abstract

Main purpose of the article is to provide designers and researchers with a dynamics models of a controller for refrigerating equipment with one thermal control valves in conjunction with a regulatory body.. This article is devoted to an analysis of the trends improve refrigeration efficiency by upgrading the control system of a thermostatic expansion valve. It is shown that Danfoss refrigeration equipment increases the efficiency of the formation of the cold due to changes in the evaporator superheat setting. The main idea of upgrading is to use a systems approach to the consideration of refrigeration equipment in conjunction with the cooling chamber and the products which are stored in it. To realize this idea one has developed a new block diagram of the cooling system as a multidimensional follow-up system that operates in conditions of air temperature changes in the refrigerating chamber and fluctuations of the refrigerant temperature and its pressure. The definition of a linearized model took place in three stages. In the first stage, based on the data of the passive experiment, spectral and cross spectral densities of signals are obtained. In the second stage, based on the results of the first, the transfer functions of the system elements and the filtering block are defined. In the third stage, the verification of the identification results, which used experimental data and received transfer functions in the second stage, was performed. The separation of the signal records that are active at the inputs and outputs of the AK-CC 550 controller and Danfoss thermostat valve allows you to determine the linearized pattern of the dynamics of the specified elements, which corresponds to the mode of operation of these elements during the recording of signals. The new transfer functions obtained form the basis for adapting the known methods of synthesis of control systems to the definition of the structure and parameters of the law of control, which is aimed at improving the efficiency of the use of cold in real operating conditions.

Keywords

a refrigerant, an evaporator, a block diagram, a vector, a disturbance, a regulator

Full Text:

PDF

References

Mizin, V.A. & Cvetkov, A.A. (2014). Innovacionnye metody povyshenija jeffektivnosti sushhestvujushhih tipov kozhuhotrubnyh apparatov [Innovative methods to improve efficiency existing types of shell-and-tube devices ]. Nauchn. zhurnal NIU ITMO. Serija «Holodil'naja tehnika i kondicionirovanie» – Scientific journal NRU ITMO Series "Refrigeration and Air Conditioning", 3, 71-77.

Kornivec, D.V. (2011). Povyshenie jeffektivnosti holodil'nih ustanovok s kompressorami «Bitcer» [Improving the efficiency of refrigeration systems with compressors "Bitzer"]. Holodil'naja tehnika – Kholodilnaya Tekhnika, 10, 22-26.

Katraev, M.Ju. (2011). Povyshenie jeffektivnosti raboty holodil'noj ustanovki. Vybor algoritma upravlenija termoregulirujushhim ventilem [Improving the efficiency of the refrigeration unit. Selection of control algorithm thermostatic valve]. Holodil'naja tehnika – Kholodilnaya Tekhnika, 4, 4-5.

Jerlihman, V.N. (2005). Razrabotka principov povyshenija jeffektivnosti tehnologicheskih processov holodil'nyh proizvodstv [Development of principles for improving the efficiency of technological processes of refrigeration production]. Doctor’s thesis. Kaliningradskij gos. tehn. un-t.. Kaliningrad.

Osadchyj, S.I. & Luzhkov, D.M. (2017). Shliakhy modernizatsii system avtomatyky kholodyl'noho ustatkuvannia z odnym termorehuliuval'nym ventylem [Paths of Modernization of Automation Systems of the Refrigeration Equipment with a Single Thermal Adjusting Valve]. Zbirnyk naukovykh prats' Kirovohrads'koho natsional'noho tekhnichnoho universytetu. Tekhnika v sil's'kohospodars'komu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia – Collected Works of KNTU: Machinery in Agricultural Production, industry machine building, automation , Vol. 30, 160-167.

Zghurovs'kyj, M.Z. & Pankratova, N.D. (2007). Osnovy systemnoho analizu [Basics of system analysis]. Kyiv: Vydavnycha hrupa BHV.

AK-SS 550 Evaporator Controller for controlling refrigeration units. User's Guide. Danfoos, RS.8E.N1.50.

Azarskov, V.N., Blohin, L.N. & Zhiteckij L.S. (2006). Methodology for constructing optimal stochastic stabilization systems. L.N. Blohina (Ed.). Kiev: Knizhnoe izdatel'stvo NAU.

Blokhin, L.M., Osadchyj, S.I. & Krivonosenko, O.P. (2009). Metodolohichni osnovy ta etapy zabezpechennia konkurentnozdatnosti protsesiv stabilizatsii isnuiuchykh rukhomykh obiektiv [Methodological principles and stages of competitive processes of stabilization of existing moving objects]. Visnyk NAU – Proceedings of the NAU, 2, 61-68.

Blohin, L.N. & Zhiteckij, L.S. (2003). Nelinejnye optimal'nye sistemy shasticheskoj stabilizacii [Nonlinear optimal systems of shechastic stabilization]. Kibernetika i vychislitel'naja tehnika – Cybernetics and Computer Engineering, Vol. 139, 12-23.

Otnes, R. & Jenokson, L. (1982). Applied time series analysis. Basic methods. (V.I. Hohlova, Trans). Moscow: Mir.

Blohіn, L.M., Burichenko, M.Ju., Bіlak, N.V. & et.al. (2014). Statistichna dinamіka sistem upravlіnnja: pіdruchnik [Statistical dynamics of control systems.]. – Kyiv: NAU.

GOST Style Citations

  1. Мизин В.А. Инновационные методы повышения эффективности существующих типов кожухотрубных аппаратов [Текст] / В.М. Мизин, А.А. Цветков // Научн. журнал НИУ ИТМО. Серия «Холодильная техника и кондиционирование». – 2014. – №3. – С.71-77
  2. Корнивец Д.В. Повышение эффективности холодильних установок с компрессорами «Битцер» [Текст] / Д.В. Корнивец // Холодильная техника. – 2011. – №10. – С.22-26
  3. Катраев М.Ю. Повышение эффективности работы холодильной установки. Выбор алгоритма управления терморегулирующим вентилем [Текст] / Ю.М. Катраев // Холодильная техника. – 2011. – №4. – С.4-5
  4. Эрлихман В.Н. Разработка принципов повышения эффективности технологических процессов холодильных производств [Текст] : автореф. дис. … д-ра техн. наук: 05.18.04, 05.18.12 / Эрлихман Владимир Наумович; Калининградский гос. техн. ун-т. – Калининград, 2005. – 49 с.
  5. Шляхи модернізації систем автоматики холодильного устаткування з одним терморегулювальним вентилем [Текст] / С.І. Осадчий, Д.М. Лужков // Збірник наукових праць Кіровоградського національного технічного університету. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація. – 2017. – Вип. 30. – С. 160-167.
  6. Згуровський М.З. Основи системного аналізу [Текст] / М.З. Згуровський, Н.Д. Панкратова. – К.: Видавнича група BHV, 2007. – 544с.
  7. Контроллер испарителя АК-СС 550 для управления холодильными установками. Руководство пользователя. – Danfoos – RS.8E.N1.50. – 44c.
  8. Азарсков В.Н. Методология конструирования оптимальных систем стохастической стабилизации: Монография [Текст] / В.Н. Азарсков, Л.Н. Блохин, Л.С. Житецкий ; под ред. Блохина Л.Н. – К.: Книжное издательство НАУ, 2006. – 440с.
  9. Блохін Л.М. Методологічні основи та етапи забезпечення конкурентноздатності процесів стабілізації існуючих рухомих обєктів [Текст] / Л.М. Блохін, С.І. Осадчий, О.П. Крівоносенко // Вісник НАУ. – 2009. – №2. – С. 61-68.
  10. Блохин Л.Н. Нелинейные оптимальные системы схастической стабилизации [Текст] / Л.Н. Блохин, Л.С. Житецкий // Кибернетика и вычислительная техника. – 2003. – Вып. 139. – С.12-23.
  11. Прикладой анализ временных рядов. Основне методы [Текст] : монографія / Р. Отнес, Л. Эноксон; пер. с англ. В.И. Хохлова. – М.: Мир, 1982. – 428с. – Библиогр.: с.410-415.
  12. Статистична динаміка систем управління [Текст] : підручник / Л.М. Блохін, М.Ю. Буриченко, Н.В. Білак [та ін.]. – К.: НАУ, 2014. – 300с.
Copyright (c) 2018 Dmytro Luzshkov, Sergiy Osadchy, Olexandr Didyk